
Learning Object Properties Using Robot Proprioception
via Differentiable Robot-Object Interaction

Peter Yichen Chen1, Chao Liu1, Pingchuan Ma1, John Eastman1,
Daniela Rus1, Dylan Randle2, Yuri Ivanov2, Wojciech Matusik1

Abstract— Differentiable simulation has become a powerful
tool for system identification. While prior work has focused on
identifying robot properties using robot-specific data or object
properties using object-specific data, our approach calibrates
object properties by using information from the robot, without
relying on data from the object itself. Specifically, we utilize
robot joint encoder information, which is commonly available
in standard robotic systems. Our key observation is that by
analyzing the robot’s reactions to manipulated objects, we can
infer properties of those objects, such as inertia and softness.
Leveraging this insight, we develop differentiable simulations
of robot-object interactions to inversely identify the properties
of the manipulated objects. Our approach relies solely on
proprioception – the robot’s internal sensing capabilities – and
does not require external measurement tools or vision-based
tracking systems. This general method is applicable to any
articulated robot and requires only joint position information.
We demonstrate the effectiveness of our method on a low-cost
robotic platform, achieving accurate mass and elastic modulus
estimations of manipulated objects with just a few seconds of
computation on a laptop.

I. INTRODUCTION

When humans pick up objects, they can easily distinguish
between heavy and light ones. When applying the same
amount of torque at the elbow to lift an object, the elbow will
rotate significantly more for a lighter object than a heavier
one. Similarly, by squeezing an object, humans can assess its
softness based on how much their finger joints flex. In both
cases, humans rely solely on proprioceptive signals—internal
sensing capabilities—to learn about the object. In this work,
we ask: can robots learn about objects through interactions
in the same way humans do?

Traditional methods for object parameter calibration of-
ten rely on external tools and sensors. To determine an
object’s softness, for example, robots might use specialized
equipment like tensile testing machines [1]. While effective,
this approach involves additional steps and is impractical in
scenarios where direct access to the object is unavailable,
such as when the object is inside a container (see Fig-
ure 1). Another common approach involves equipping robots
with external sensors [2], such as cameras, to track object
movement or force sensors to measure applied forces [3].
Although these sensors provide valuable data, they increase
cost and are not universally available on all robots.

Our key insight is that a robot can infer object parameters
by leveraging its own proprioceptive signals. During robot-

1MIT CSAIL{pyc, chaoliu, pcma, eastmanj, rus,
wojciech}@csail.mit.edu

2Amazon Robotics {dylanran,yuriivan}@amazon.com

object interactions, the robot’s responses vary depending on
the object’s properties. By analyzing these responses, we
can extract information about the object’s characteristics,
thus eliminating the need for external tools and simplifying
the system identification process. The only signals required
are the robot’s proprioceptive data from the robot’s internal
sensors, such as joint encoders [4]. Therefore, this approach
applies to any articulated robot without the need for advanced
sensors. Similar to how humans can feel the weight of objects
without visual cues, our approach also does not require
vision-based supervision.

Previous approaches to object identification using propri-
oceptive signals often require multiple sensors, such as joint
encoders and haptic sensors, necessitating sensor fusion [5],
[6]. In contrast, our method relies solely on joint encoder
information. A key aspect of our approach is using differen-
tiable simulations of the robot and object dynamics, enabling
us to inversely identify the object’s characteristics using only
a single motion trajectory.

In summary, we propose a novel framework for learning
object parameters through robot-object interactions. Our con-
tributions are threefold:

• We demonstrate that object parameters can be learned
using robot proprioception in a highly data-efficient
manner.

• We develop predictive simulations of robot-object in-
teractions that are highly efficient and serve as key
components in our system identification pipeline.

• We validate our approach to diverse robot-object inter-
actions, successfully recovering both mass and elastic
moduli from a single interaction trajectory.

II. RELATED WORK
System identification methods have been extensively used

to calibrate the properties of both robots and manipulated
objects. Traditional system identification techniques focus
on identifying multiple inertial parameters of articulated
robots by observing the robot’s joint movements and em-
ploying linear regression [7]–[9]. More recently, researchers
have explored alternatives to traditional differential-equation-
based models, particularly data-driven approaches like neural
networks, which serve as the underlying dynamics models
for learning general nonlinear dynamics [10]–[14]. These
learned models are crucial for downstream tasks such as
model predictive control in dynamic manipulations [15]–
[19], locomotion [20]–[22], and physical scene understand-
ing [23]–[26]. Our work builds upon these robot system



Mass

Material

Object Parameters DiffPhysics

Robot

Gripper

Container

Inside Object

Reaction Action

Calibration

...

T=1 T=N

T=1 T=N

...

Proprioceptive Loss

T=1 T=N

Fig. 1. Calibrating Object Parameters through Differentiable Physics Using Proprioceptive Signals. Left: Our method aims to identify object
parameters, such as the mass and material properties of the purple sphere. Middle: We utilize differentiable physics to simulate interactions between the
robot and the object. Right: Object parameters are identified by supervising the differentiable physics simulation (top) using proprioceptive signals (joint
positions, shown as green circles) from the real robot (bottom). Notably, our approach does not require tracking the object’s trajectory (red circles); instead,
it relies solely on the robot’s internal sensors for the calibration process.

identification methods but diverges in its primary focus:
rather than calibrating robot parameters, we aim to identify
the properties of the object being manipulated.

Differentiable simulations have emerged as effective
tools for system identification, leveraging easily available
gradients to enable efficient gradient-based optimization for
parameter identification. These simulations have been used to
identify parameters of both rigid and soft robots by tracking
the robot’s movements [24], [25], [27]–[34]. Additionally,
differentiable simulations have been employed to calibrate
properties of objects manipulated by robots, involving com-
plex interactions such as friction contacts and large deforma-
tions [35]–[38]. However, most of these approaches require
direct access to the object’s movement over time, often
through vision-based tracking systems. Our approach also
focuses on calibrating the properties of manipulated objects,
but it does so by tracking the robot’s movement over time,
eliminating the need for direct observation of the object.

Proprioception plays a crucial role in human interactions
with the environment, particularly when vision is insuffi-
cient [39]. Proprioceptive signals provide real-time feedback
that is less susceptible to noise, can operate in various
lighting conditions, and are inherently privacy-preserving.
This has inspired the development of robotic actuators that
perceive their own states—such as position, velocity, and
force—without relying on external sensors [40]–[43]. Inter-
nal sensing capabilities have been increasingly leveraged for
various purposes, including robot calibration [44], manipu-
lated object identification [45], [46], parameter estimation
[5], control [47], and manipulation of deformable objects
[6]. These approaches often require multi-modal signals and
sensor fusion algorithms. By contrast, our approach only
utilizes proprioceptive signals from joint encoders in simple
trajectories to efficiently estimate the physical properties of
manipulated objects, bypassing the need for external sensing
methods.

III. METHOD: DYNAMICS MODELS

This section outlines the dynamic models of both the robot
and the manipulated objects, which serve as the “forward”
simulation models. Section IV will describe how to use the
corresponding “backward” models for parameter learning.
These dynamic models take the joint torque τ as input and
predict the dynamic responses resulting from the robot-object
interactions.

A. Robot
a) Equation of Motion: We model the robot’s dynamics

using articulated rigid body dynamics [48], [49]. The motion
of these kinematic chains of multi-body systems can be
described by the following ordinary differential equation
(ODE):

H(q)q̈ +C(q, q̇,fx) = τ , (1)

where q(t), q̇(t), and q̈(t) represent the joint positions,
velocities, and accelerations, respectively. The matrix H
is the generalized inertia matrix, and C is the bias force
matrix that accounts for external forces fx, such as gravity.
The term τ (t) represents the generalized forces, such as
torques applied at the joints. In the “forward” model of our
experimental setup, we apply known τ (t) to the system and
aim to solve for q(t) over time.

b) Temporal Discretization: To solve Equation (1) over
time, we discretize it temporally with a time step size ∆t and
a total of T time steps {tn}Tn=0. Using a semi-implicit Euler
integration scheme [50], we arrive at:

q̇n+1 = q̇n +∆tq̈n+1, qn+1 = qn +∆tq̇n+1, (2)

∀n = 0, 1, . . . , T−1, where qn := q(tn), q̇n := q̇(tn), q̈n :=
q̈(tn). Semi-implicit time integration is a type of variational
integrator that conserves energy, but it is not unconditionally
stable and requires a sufficiently small time step to maintain
stability. In our experiments, we simulate at 60 frames per
second, using between 4 and 64 substeps to ensure accuracy
and stability.



B. Object
Although we focus on articulated robots, the objects being

manipulated can vary broadly and may not be limited to
the dynamics described by Equation (1). Below, we outline
several types of objects and their dynamic models.

a) Fixed Joint: The simplest case involves a robot hold-
ing an object modeled as a rigid body attached to the robot
via an additional joint in the kinematic tree. For instance,
assuming a tight grip, this additional joint can be modeled
as a fixed joint (see Figure 2a). The inertial parameters of
the object influence the generalized inertia matrix H in
Equation (1), leading to different dynamic responses. This
fixed joint model can be extended to other joint types, such
as prismatic and universal joints [51]. Notably, contact and
collision modeling are unnecessary as we assume the object
is securely grasped by the robot.

b) Contacts and Collisions: The second case involves
manipulating an object that cannot be modeled as part of the
articulated system’s kinematic tree. For example, while the
robot grasps and moves a container, a small sphere inside the
container is not part of the kinematic tree (see Figure 2b).
The small sphere and the robot interact dynamically through
contact and collision between the sphere and the container.
The small sphere’s rigid body dynamics are modeled sepa-
rately from the robot’s using its own rigid body equation of
motion [48]:

Ho(qo)q̈o +Co(qo, q̇o,f
x
o) = τ o,

where the subscript “o” denotes the object’s quantities.
The contact forces between the sphere and the robot’s

kinematic tree are modeled using penalty-based methods:

fn = kedn − kdvn,

f t = −min (kf∥vt∥, µ∥fn∥) ·
vt

∥vt∥
,

where fn and f t represent normal and tangential contact
forces, vn and vt are relative velocities in the normal
and tangential directions, and dn is the penetration depth.
The constants ke, kd, kf , µ are the normal contact stiffness,
normal damping coefficient, friction stiffness, and friction
coefficient, respectively [52]–[54]. These contact forces im-
pact both the robot and the object’s motion, contributing to
the time-varying τ (t) and τ o(t).

c) Deformables: While the previous cases assume rigid
bodies, this scenario considers deformable bodies whose
shapes change over time due to interactions and contacts with
the robot (see Figure 2c). The dynamics of the deformable
object are governed by the elastodynamics equation [55]:

ρ0ϕ̈ = ∇ · P + ρ0b, (3)

where ϕ is the spatiotemporal deformation map, ρ0 is the
initial density, P = ∂Ψ

∂F is the first Piola-Kirchhoff stress,
F := ∇ϕ is the deformation gradient, and b represents the
body force. The elastic energy Ψ is characterized by the
stable Neo-Hookean model [56], [57]:

Ψ =
kµ
2
(IC − 3)− kµ log J +

kλ
2
(log J)2, (4)

where kµ and kλ are the first and second Lamé parameters,
and IC and J are invariants of the deformation gradient. We
use the finite element method (FEM) to discretize and solve
the elastodynamics equation [58]. In our FEM implementa-
tion, the deformable body is geometrically represented using
tetrahedral elements. For objects with a rectangular shape, we
divide them into multiple hexahedral cells, each of which is
further decomposed into 5 tetrahedral elements.

IV. METHOD: SYSTEM IDENTIFICATION

Let θ represent the system parameters we aim to recover
from the coupled dynamical system of the robot and the
object (as defined in Section III). For instance, we may wish
to determine the inertial parameters of a small sphere moving
inside a box that is manipulated by the robot (see Figure 1
and Figure 2b). Given observations of the robot’s motion
over time, our goal is to learn the parameters θ by solving
an inverse problem, formulated as the following optimization
problem:

min
θ

L({qGT
n }Tn=0, {qn}Tn=0), (5)

where L is the loss function, specifically the mean squared
error (MSE). The term qGT

n denotes the ground truth joint
positions obtained from the robot’s joint encoder readings.
By using a semi-implicit integration scheme as described in
Equation (2), it is equivalent to supervise on joint position,
velocity, or acceleration [30].

The loss function is constructed solely from the robot’s
kinematic quantities. In contrast, the system parameters θ
that we aim to learn can encompass any aspect of the
robot-object system, including the object’s inertial properties
and material properties such as the first and second Lamé
parameters (see Section III-B), which quantify the object’s
softness. Fundamentally, our method relies exclusively on
proprioceptive signals to calibrate the environment with
which the robot interacts (see Figure 3).

We use first-order gradient-based optimization techniques
to solve Equation (5). To efficiently compute the gradients
with respect to the system parameters (∂L∂θ ), we utilize the
differentiable simulation framework Nvidia Warp [59], [60].
For each “forward” dynamics model described in Section III,
Warp automatically generates a corresponding “backward”
adjoint model. Warp does it by leveraging the chain rule
and Jacobian transpose products through built-in functions
with corresponding adjoint methods. As such, Warp enables
efficient gradient accumulation across long computational
chains, accommodating the extensive number of time steps
(Equation (2)) required for accurate simulation of robot-
object interactions.

V. RESULTS

Section V-A to Section V-C validate our method across a
wide range of manipulated object types, demonstrating that it
can efficiently and accurately identify object parameters us-
ing the robot’s proprioceptive system in real-world scenarios.
Section V-D to Section V-F present ablation studies that show
our method is as accurate as non-proprioception approaches



(a1) (b) (c)(a2)

Fig. 2. Learning Object Properties through Various Robot-object Dynamics Enabled by Joint Activations. (a1)(a2) The object is attached to the
robot as a fixed joint. The heavier ball on the left causes the robot to move less under the same joint torque. (b) The object interacts with the robot through
contacts and collisions within a container. (c) The object deforms due to compression forces applied by the gripper.

P
ro
p
ri
o
ce
p
ti
o
n

E
x
te
ro
ce
p
ti
o
n

Simulation Reality

Joint Angles

Object

External
Camera

Fig. 3. Proprioception—the robot’s internal sensing capabilities. Our
approach constructs the optimization objective, i.e., Equation (5), using
solely proprioceptive signals, which are directly available from the robot’s
internal encoders. This approach does not require exteroceptive signals, such
as object motion tracking via external cameras.

that require external sensors and explicit tracking. All exper-
iments were conducted using the Robotis OpenManipulator-
X robot (see Appendix for details). The robot was operated
in the current control mode, and for each experimental
setup, we report the current applied to generate the torque
τ . Additional optimization details are also provided in the
appendix. The temporal evolutions of the dynamical system
are best illustrated in the supplementary video.

A. Experiment: Fixed Joint

We aim to identify θ = mo, where mo is the mass of the
object being manipulated. The object is held tightly by the
robot’s end effector and can be modeled through a fixed joint.
We apply a constant current (300 mA) to generate torque τ at
joint-2, applying the torque for 0.6 seconds while keeping the
other joints fixed. Intuitively, under constant torque, heavier
objects cause the robot to move more slowly (see Figure 2a1
and Figure 2a2). In this case, the supervision signal qGT

n
T

n=0

is the temporal evolution of joint-2’s position.
Using only a single trajectory of 0.6 seconds for super-

vision might seem like very little data. However, due to
the large number of time steps involved in constructing
the loss (Equation (5)) and solving the dynamic equation

TABLE I
ACCURATE AND FAST SYSTEM IDENTIFICATION. OUR METHOD

IDENTIFIES OBJECT MASS WITHIN A FEW SECONDS, WITH ERRORS

RANGING FROM 0.002 TO 0.006 KG.

Identified
mass (kg)

Groud truth
mass (kg)

Error
(kg)

Computation
time (s)

Heavy
ball 0.056 0.050 0.006 2.696

Light
ball 0.022 0.020 0.002 2.570

Heavy
cube 0.020 0.023 0.003 2.546

Light
cube 0.008 0.010 0.002 2.667

(a) Incorrect 

object mass
(b) Correct

object mass

(c) Ground

truth

Simulation Simulation Real

Fig. 4. Closing the Sim-to-Real Gap through Accurate Object Property
Identification. With the correctly identified object mass, our simulation
closely matches real-world observations.

(Equation (1)) at each time step, we effectively generate
hundreds of unique and valid data points.

We tested four different objects: heavy ball, light ball,
heavy cube, and light cube. Table I reports the masses
identified by our algorithm. Figure 4 shows that with the
correctly identified mass, the simulation closely matches
the real-world robot’s motion. Figure 6 demonstrates that
our algorithm converges in just a few iterations, thanks to
the accurate gradient computation enabled by differentiable
simulation. Comparisons with gradient-free optimization will
be discussed in Section V-E.

Instant calibration: Our algorithm runs on laptops (Mac-



(a) Stiff material

under compression

(b) Soft material

under compression

(c) Learned

elastic modulus (stiff)

(c) Learned

elastic modulus (soft)

Sim

Real Real

Sim

Fig. 5. Identifying Elastic Moduli. Our approach identifies the elastic
moduli of materials with varying stiffness. With the learned parameters, the
simulation closely matches the experiments.

Book Pro Apple M1 Max) and identifies the system param-
eters in just a few seconds (see timing in Table I).

B. Experiment: Contacts and Collisions

While the previous experimental setup provides direct
access to the object under calibration, we now consider a
more challenging scenario where explicit access to the object
is not available. Specifically, we aim to calibrate the mass
of a sphere inside a container without opening the container
(See Figure 1), i.e., θ = ms where ms is the mass of the
sphere.

Humans often estimate the properties of objects inside a
container by shaking it [61]. Following this intuition, we use
the robot gripper to shake the container holding the sphere.
A constant current (100 mA) is applied to generate torque
τ at joint-3 for 0.6 seconds, while the other joints remain
fixed. The position of joint-3 serves as the supervision signal
{qGT

n }Tn=0.
Under the influence of the moving container and gravity,

the sphere rotates within the container, affecting the super-
vision signal. For contact and collision modeling, we scaled
the default parameters from the Warp library to ensure stable
robot simulations. Our algorithm identifies the sphere’s mass
as 0.018 kg, compared to a measured mass of 0.012 kg,
yielding a similar error as the fixed joint experiment (see
Table I).

C. Experiment: Deformable Bodies

Our model can also identify elastic moduli, specifically the
first and second Lamé parameters, θ = kµ, kλ, as described
in Equation (4). We use the heavy and light cubes whose
masses were identified in Section V-A. The prismatic joint

TABLE II
ABLATION STUDY: ROBUSTNESS UNDER DIFFERENT INITIAL SEEDS.

OUR APPROACH CONSISTENTLY CONVERGES TO ACCURATE

PARAMETERS EVEN WITH INITIAL GUESSES THAT VARY BY ORDERS OF

MAGNITUDE. ONLY EXTREME, UNREALISTIC INITIAL GUESSES LED TO

UNDESIRABLE LOCAL MINIMA.

Initial guess (kg) Converged mass (kg) Ground truth (kg)
0.000 0.055
0.001 0.056
0.005 0.056
0.095 0.057
0.191 0.058
4.772 4.851

0.050

Fig. 6. Ablation Study: The Effectiveness of Gradients. Differentiable
simulation provides accurate gradients that enable gradient-based optimiza-
tion, which is more efficient than gradient-free baselines.

at the robot’s gripper is activated to compress the specimen.
A constant current (300 mA) is applied to generate torque
τ at joint-4 for 1.0 second, with all other joints held fixed.
Intuitively, the softer the cube, the greater the compression it
undergoes. The supervision signal in this case is the temporal
evolution of the gripper’s prismatic joint position. Similar to
previous experiments, our method does not require tracking
the soft cubes themselves.

Figure 5 shows the real experiment alongside the corre-
sponding simulations. By solving Equation (5), we inversely
identify the first and second Lamé parameters of the cubes.
The lighter cube has smaller elastic moduli (kµ = 749.6 Pa,
kλ = 264.3 Pa) and undergoes greater deformation compared
to the heavy cube (kµ = 5097.6 Pa, kλ = 5430.4 Pa). These
learned parameters allow the simulations to closely match
observed behaviors (see Figure 5).

D. Ablation Study: Different Initial Seeds

To evaluate the robustness of our approach, we initialized
the optimization solver (Equation (5)) with initial seeds
spanning orders of magnitude differences. The task was to
identify the mass of the aforementioned heavy ball. Table II
shows that our method converges to the correct solution
despite vastly different initial guesses. If the initial guess
is extremely unrealistic (e.g., an excessively large mass), the
simulation may yield divergent dynamics, causing the robotic
arm to move incorrectly and trapping the optimization pro-
cess in a local minimum. To mitigate this, we initialize our
gradient-based algorithm with five different initial guesses



(a) Heavy ball (c) Heavy cube (d) Light cube (b) Light ball 

Fig. 7. Optimization Landscape. Our gradient-based, differentiable simulation-powered approach efficiently solves the system identification problem
across various manipulated objects.

that span two orders of magnitude [62].

E. Ablation Study: Gradient-Free Optimization

In our work, we leverage differentiable simulations and
gradient-based optimizers. As a comparison, gradient-free
methods such as the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [63] can also be used. Figure 6 shows
that our gradient-based approach converges faster, whereas
gradient-free methods require more iterations and may strug-
gle to find the global minimum.

F. Comparison: Non-Proprioception, Explicit-Tracking-
Based Approaches

A key feature of our approach is that it senses the
environment using only the robot’s proprioceptive signals,
without relying on external sensors. We compare our ap-
proach with differentiable simulation techniques that use
additional supervision signals, such as from computer vision
[51]. Specifically, for the sphere-container experiments (see
Figure 1 and Section V-B), both the sphere positions and
joint positions are used as supervision signals in {qGT

n }Tn=0.
Under the same number of optimization iterations, this
alternative approach identifies the sphere’s mass as 0.016
kg, which is comparable to our method. Thus, compared
to vision-based approaches, our method does not require
explicit tracking of the object’s movement while delivering
similar performance.

VI. DISCUSSIONS AND CONCLUSIONS

We introduce a framework for object calibration using
robot’s proprioceptive sensing capabilities. Our approach
leverages differentiable simulations of robot-object interac-
tions to efficiently quantify object properties that influence
the robot’s responses over time. Notably, our method remains
effective even in challenging scenarios where there is no
direct access to the manipulated object (See Figure 1).

While we demonstrated three types of robot-object inter-
action modes in Section III-B, our approach can readily be
generalized to handle more complex objects such as sloshing
liquids and granular materials. Future extensions of this work
could explore applications in other robotics systems, such
as wheeled robots and soft robots [42], and incorporate
probabilistic estimates of object properties [51].

Although our approach does not explicitly track object
trajectories, it does assume knowledge of the objects’ initial
positions to set up the simulations. Future work could
address this limitation by employing domain randomization
techniques [37] to relax the requirement of known initial
positions.

Proprioception is a fundamental way for humans to per-
ceive and interact with the world. We envision a future
where robots can also learn about their environment using
proprioceptive signals. With an enhanced understanding of
the world, robots can achieve more effective model predictive
control, similar to how humans adjust their actions based on
an object’s known properties to optimize how they move and
manipulate it.

APPENDIX

A. Hardware Details

Our hardware features a ROBOTIS OpenManipulator-X
robotic arm powered by five high-precision DYNAMIXEL
XM430-W350-T motors. These actuators have 12-bit abso-
lute encoders for precise joint position measurements and
torque control mode. Motor control is handled via the
DYNAMIXEL SDK, allowing for communication at 40Hz to
send commands and receive real-time motor status updates.

B. Optimizer Details

We utilize the Adam optimizer [64] combined with a
cosine annealing learning rate scheduler [65]. An initial
learning rate of 0.01 effectively minimizes the loss across all
experiments. As shown in Figure 7, our method converges
in just a few iterations.

ACKNOWLEDGMENT

This paper has been supported in part by Amazon and
the GIST-CSAIL research program; we are grateful for
their support. We extend our thanks to Eric Heiden for
his generous assistance with differentiable articulated body
dynamics using Warp, and to Yunsheng Tian and Steven Yip
Fun Yeung for their insightful discussions. We also thank
Lisa Yuxi Wang and Martin Yu Chen for providing the
experimental specimens used in this study.



REFERENCES

[1] J. R. Davis, Tensile testing. ASM international, 2004.
[2] X. Zhang, Y. Song, Y. Yang, and H. Pan, “Stereo vision based

autonomous robot calibration,” Robotics and Autonomous Systems,
vol. 93, pp. 43–51, 2017.

[3] C. Lebossé, P. Renaud, B. Bayle, and M. de Mathelin, “Modeling and
evaluation of low-cost force sensors,” IEEE Transactions on Robotics,
vol. 27, no. 4, pp. 815–822, 2011.

[4] P. Li and X. Liu, “Common sensors in industrial robots: A review,”
in Journal of Physics: Conference Series, vol. 1267, no. 1. IOP
Publishing, 2019, p. 012036.

[5] D. Kubus, T. Kroger, and F. M. Wahl, “On-line rigid object recognition
and pose estimation based on inertial parameters,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct 2007,
pp. 1402–1408.

[6] M. C. Gemici and A. Saxena, “Learning haptic representation for ma-
nipulating deformable food objects,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2014, pp. 638–
645.

[7] C. G. Atkeson, C. H. An, and J. M. Hollerbach, “Estimation of inertial
parameters of manipulator loads and links,” The International Journal
of Robotics Research, vol. 5, no. 3, pp. 101–119, 1986.

[8] M. Gautier and W. Khalil, “A direct determination of minimum iner-
tial parameters of robots,” in Proceedings. 1988 IEEE International
Conference on Robotics and Automation. IEEE, 1988, pp. 1682–1687.

[9] ——, “On the identification of the inertial parameters of robots,” in
Proceedings of the 27th IEEE Conference on Decision and Control,
vol. 3. IEEE Piscataway, NJ, 1988, pp. 2264–2269.

[10] C.-M. Chow, A. G. Kuznetsov, and D. W. Clarke, “Successive one-
step-ahead predictions in multiple model predictive control,” Interna-
tional journal of systems science, vol. 29, no. 9, pp. 971–979, 1998.

[11] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,
“Gaussian process model based predictive control,” in Proceedings
of the 2004 American control conference, vol. 3. IEEE, 2004, pp.
2214–2219.

[12] I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep
latent features for model predictive control.” in Robotics: Science and
Systems, vol. 10. Rome, Italy, 2015, p. 25.

[13] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme,
“NeuralSim: Augmenting differentiable simulators with neural
networks,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2021. [Online]. Available:
https://github.com/google-research/tiny-differentiable-simulator

[14] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, and J. Peters,
“Robot learning from randomized simulations: A review,” Frontiers in
Robotics and AI, vol. 9, p. 799893, 2022.

[15] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning
particle dynamics for manipulating rigid bodies, deformable objects,
and fluids,” arXiv preprint arXiv:1810.01566, 2018.

[16] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” IEEE
Transactions on Robotics, vol. 36, no. 4, pp. 1307–1319, 2020.

[17] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba, “3d neural
scene representations for visuomotor control,” in Conference on Robot
Learning. PMLR, 2022, pp. 112–123.

[18] C. Chi, B. Burchfiel, E. Cousineau, S. Feng, and S. Song, “Itera-
tive residual policy: for goal-conditioned dynamic manipulation of
deformable objects,” The International Journal of Robotics Research,
vol. 43, no. 4, pp. 389–404, 2024.

[19] Z. Liu, G. Zhou, J. He, T. Marcucci, F.-F. Li, J. Wu, and Y. Li,
“Model-based control with sparse neural dynamics,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[20] N. Sontakke, H. Chae, S. Lee, T. Huang, D. W. Hong, and S. Hal,
“Residual physics learning and system identification for sim-to-real
transfer of policies on buoyancy assisted legged robots,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2023, pp. 392–399.

[21] W. Yu, V. C. Kumar, G. Turk, and C. K. Liu, “Sim-to-real transfer
for biped locomotion,” in 2019 ieee/rsj international conference on
intelligent robots and systems (iros). IEEE, 2019, pp. 3503–3510.

[22] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[23] Y. Li, T. Lin, K. Yi, D. Bear, D. Yamins, J. Wu, J. Tenenbaum,
and A. Torralba, “Visual grounding of learned physical models,” in
International conference on machine learning. PMLR, 2020, pp.
5927–5936.

[24] D. Hahn, P. Banzet, J. M. Bern, and S. Coros, “Real2sim: Visco-elastic
parameter estimation from dynamic motion,” ACM Transactions on
Graphics (TOG), vol. 38, no. 6, pp. 1–13, 2019.

[25] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu,
D. Rus, and W. Matusik, “Chainqueen: A real-time differentiable
physical simulator for soft robotics,” in 2019 International conference
on robotics and automation (ICRA). IEEE, 2019, pp. 6265–6271.

[26] T. Du, K. Wu, P. Ma, S. Wah, A. Spielberg, D. Rus, and W. Matusik,
“Diffpd: Differentiable projective dynamics,” ACM Transactions on
Graphics (TOG), vol. 41, no. 2, pp. 1–21, 2021.

[27] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z.
Kolter, “End-to-end differentiable physics for learning and control,”
Advances in neural information processing systems, vol. 31, 2018.

[28] J. Degrave, M. Hermans, J. Dambre et al., “A differentiable physics
engine for deep learning in robotics,” Frontiers in neurorobotics, p. 6,
2019.

[29] G. Sutanto, A. Wang, Y. Lin, M. Mukadam, G. Sukhatme, A. Rai, and
F. Meier, “Encoding physical constraints in differentiable newton-euler
algorithm,” in Learning for Dynamics and Control. PMLR, 2020, pp.
804–813.

[30] M. Lutter, J. Silberbauer, J. Watson, and J. Peters, “Differentiable
physics models for real-world offline model-based reinforcement
learning,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 4163–4170.

[31] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and
C. Gan, “Plasticinelab: A soft-body manipulation benchmark with
differentiable physics,” ICLR, 2021.

[32] Y. Qiao, J. Liang, V. Koltun, and M. Lin, “Differentiable simulation of
soft multi-body systems,” Advances in Neural Information Processing
Systems, vol. 34, pp. 17 123–17 135, 2021.

[33] E. Heiden, Z. Liu, V. Vineet, E. Coumans, and G. S. Sukhatme,
“Inferring articulated rigid body dynamics from rgbd video,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 8383–8390.

[34] M. Lutter, “A differentiable newton–euler algorithm for real-world
robotics,” in Inductive Biases in Machine Learning for Robotics and
Control. Springer, 2023, pp. 9–34.

[35] Q. Le Lidec, I. Kalevatykh, I. Laptev, C. Schmid, and J. Carpentier,
“Differentiable simulation for physical system identification,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 3413–3420, 2021.

[36] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and
feature-complete differentiable physics for articulated rigid bodies with
contact,” arXiv preprint arXiv:2103.16021, 2021.

[37] P. Ma, T. Du, J. B. Tenenbaum, W. Matusik, and C. Gan, “Risp:
Rendering-invariant state predictor with differentiable simulation and
rendering for cross-domain parameter estimation,” arXiv preprint
arXiv:2205.05678, 2022.

[38] P. Ma, P. Y. Chen, B. Deng, J. B. Tenenbaum, T. Du, C. Gan, and
W. Matusik, “Learning neural constitutive laws from motion observa-
tions for generalizable pde dynamics,” in International Conference on
Machine Learning. PMLR, 2023, pp. 23 279–23 300.

[39] M. A. Heller, “Haptic dominance in form perception: Vision versus
proprioception,” Perception, vol. 21, no. 5, pp. 655–660, 1992, pMID:
1488268. [Online]. Available: https://doi.org/10.1068/p210655

[40] S. Seok, A. Wang, D. Otten, and S. Kim, “Actuator design for
high force proprioceptive control in fast legged locomotion,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 1970–1975.

[41] P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim,
“Proprioceptive actuator design in the mit cheetah: Impact mitigation
and high-bandwidth physical interaction for dynamic legged robots,”
Ieee transactions on robotics, vol. 33, no. 3, pp. 509–522, 2017.

[42] J. Tapia, E. Knoop, M. Mutnỳ, M. A. Otaduy, and M. Bächer,
“Makesense: Automated sensor design for proprioceptive soft robots,”
Soft robotics, vol. 7, no. 3, pp. 332–345, 2020.

[43] D. Alatorre, D. Axinte, and A. Rabani, “Continuum robot proprio-
ception: the ionic liquid approach,” IEEE Transactions on Robotics,
vol. 38, no. 1, pp. 526–535, 2021.

[44] V. Pradeep, K. Konolige, and E. Berger, “Calibrating a multi-arm
multi-sensor robot: A bundle adjustment approach,” in Experimen-

https://github.com/google-research/tiny-differentiable-simulator
https://doi.org/10.1068/p210655


tal Robotics: The 12th International Symposium on Experimental
Robotics. Springer, 2014, pp. 211–225.

[45] T. Nakamura, T. Nagai, and N. Iwahashi, “Multimodal object catego-
rization by a robot,” in 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2007, pp. 2415–2420.

[46] J. Sinapov, T. Bergquist, C. Schenck, U. Ohiri, S. Griffith, and
A. Stoytchev, “Interactive object recognition using proprioceptive
and auditory feedback,” The International Journal of Robotics
Research, vol. 30, no. 10, pp. 1250–1262, 2011. [Online]. Available:
https://doi.org/10.1177/0278364911408368

[47] Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and D. Pathak,
“Coupling vision and proprioception for navigation of legged robots,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 17 273–17 283.

[48] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[49] E. Heiden, D. Millard, H. Zhang, and G. S. Sukhatme, “Interactive

differentiable simulation,” arXiv preprint arXiv:1905.10706, 2019.
[50] U. M. Ascher and L. R. Petzold, Computer methods for ordinary

differential equations and differential-algebraic equations. SIAM,
1998.

[51] E. Heiden, C. E. Denniston, D. Millard, F. Ramos, and G. S. Sukhatme,
“Probabilistic inference of simulation parameters via parallel differen-
tiable simulation,” in 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 3638–3645.

[52] O. Reynolds, “Vi. on rolling-friction,” Philosophical Transactions of
the Royal Society of London, no. 166, pp. 155–174, 1876.

[53] D. C. Drucker, “Coulomb friction, plasticity, and limit loads,” 1954.
[54] P. A. Cundall and O. D. Strack, “A discrete numerical model for

granular assemblies,” geotechnique, vol. 29, no. 1, pp. 47–65, 1979.
[55] O. Gonzalez and A. M. Stuart, A first course in continuum mechanics.

Cambridge University Press, 2008, vol. 42.
[56] J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite

element analysis. Cambridge university press, 1997.
[57] B. Smith, F. D. Goes, and T. Kim, “Stable neo-hookean flesh simula-

tion,” ACM Transactions on Graphics (TOG), vol. 37, no. 2, pp. 1–15,
2018.

[58] T. J. Hughes, The finite element method: linear static and dynamic
finite element analysis. Courier Corporation, 2003.

[59] M. Macklin, “Warp: A high-performance python framework for gpu
simulation and graphics,” https://github.com/nvidia/warp, March 2022,
nVIDIA GPU Technology Conference (GTC).

[60] ——, “Warp: Differentiable spatial computing for python,” in ACM
SIGGRAPH 2024 Courses, 2024, pp. 1–147.

[61] P. Güler, Y. Bekiroglu, X. Gratal, K. Pauwels, and D. Kragic, “What’s
in the container? classifying object contents from vision and touch,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2014, pp. 3961–3968.

[62] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in International conference on machine learning.
PMLR, 2013, pp. 115–123.

[63] N. Hansen, “The cma evolution strategy: a comparing review,” To-
wards a new evolutionary computation: Advances in the estimation of
distribution algorithms, pp. 75–102, 2006.

[64] D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[65] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

https://doi.org/10.1177/0278364911408368
https://github.com/nvidia/warp

	INTRODUCTION
	RELATED WORK
	Method: Dynamics models
	Robot
	Object

	Method: System Identification
	RESULTS
	Experiment: Fixed Joint
	Experiment: Contacts and Collisions
	Experiment: Deformable Bodies
	Ablation Study: Different Initial Seeds
	Ablation Study: Gradient-Free Optimization
	Comparison: Non-Proprioception, Explicit-Tracking-Based Approaches

	DISCUSSIONS AND CONCLUSIONS
	Hardware Details
	Optimizer Details

	References

